Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.037
Filtrar
1.
Quant Imaging Med Surg ; 14(4): 2788-2799, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617180

RESUMO

Background: Color Doppler ultrasonography (CDUS) is feasible to detect arteriovenous fistula (AVF) dysfunction in hemodialysis patients but is not sufficient to map the structure of fistula required for interventions. This study is designed to evaluate the diagnostic accuracy of three-dimensional time-of-flight magnetic resonance angiography (TOF-MRA) at 3.0T versus CDUS for AVF dysfunction, by using digital subtraction angiography (DSA) as reference. Methods: This prospective study enrolled 68 consecutive patients with dysfunctional AVF who underwent both CDUS and TOF-MRA at Shanghai Sixth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine. The analysis of the dysfunctional AVFs was divided into three regions: the feeding artery, fistula and draining veins. In the whole- and per-regional-based analyses, two observers who were blinded to the clinical and DSA results independently analyzed all CDUS and TOF-MRA datasets. The image quality and stenosis severity of the lesions on TOF-MRA were evaluated. A receiver operating characteristic curve was applied to analyze the detection of AVF dysfunction with TOF-MRA. Results: A total of 204 vessel regions were evaluated. The whole-region-based image quality of TOF-MRA was poorer in patients with a total occlusion (1.8±0.8) than in those with stenosis (2.7±0.6, P<0.001). In the whole-region analyses, TOF-MRA had higher sensitivity [99.1% (94.6-100.0%) vs. 82.9% (74.6-89.0%), P<0.001] and similar specificity [93.1% (85.0-97.1%) vs. 94.3% (86.5-97.9%), P=0.755] than CDUS. The per-region-based analyses showed that TOF-MRA yielded higher sensitivity [fistula region, 98.1% (88.4-99.9%) vs. 80.8% (67.0-89.9%); P=0.004; draining vein region, 100.0% (92.5-100.0%) vs. 85.0% (72.9-2.5%); P=0.003] and similar specificity [fistula region, 88.2% (62.3-97.8%) vs. 88.2% (62.3-97.9%); P>0.99; draining vein region, 100.0% (59.8-100.0%) vs. 87.5% (46.7-99.3%); P>0.99] than CDUS. Sensitivity and specificity of TOF-MRA were comparable to those of CDUS in feeding artery region. Conclusions: TOF-MRA is a feasible and accurate method to display AVF dysfunction in hemodialysis patients, and this method might fulfill the endovascular treatment planning requirements.

2.
Brain Behav Immun ; 119: 275-285, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599498

RESUMO

The long-term mental health consequences of COVID-19 in children and adolescents remain unclear. We investigated the impact of COVID-19 infection on mental health after China's zero-COVID policy relaxation, focusing on symptom-specific and social-family risk factors for mental health issues in children and adolescents. In a longitudinal study, 8348 youths (aged 10-18) were assessed twice (T1: September to October 2022 and T2: April to May 2023). Mental health changes (Δ=T1-T2) were compared between COVID-19-infected (COVID+, n = 4108) and non-infected (COVID-, n = 4240). After balancing social-family confounding factors at T1 with propensity score-based inverse probability weights, multivariable logistic regression was employed to assess associations between COVID-19 infection and the onset/worsening of mental health symptoms. Multivariable logistic regression was conducted to explore specific acute COVID-19 symptoms and social-family risk factors associated with the onset/worsening of mental health symptoms in COVID + group. Compared to COVID- group, COVID + group exhibited lower overall mental health improvement (Δ). COVID + group was associated with increased risks of depression worsening (OR 1.20, 95 % CI 1.04-1.39), anxiety worsening (OR 1.30, 95 % CI 1.15-1.47), stress worsening (OR 1.23, 95 % CI 1.03-1.46), insomnia worsening (OR 1.21, 95 % CI 1.05-1.39), and emotional symptoms worsening (OR 1.72, 95 % CI 1.27-2.33). Moderate-to-severe difficulty thinking, breathlessness, and gastrointestinal symptoms were specific COVID-19 symptoms associated with worsening of various mental health outcomes. Furthermore, academic difficulties, economic disadvantages, family conflicts, food addiction, and alcohol consumption were identified as social-family risk factors for worsening mental health symptoms in COVID + youths. COVID-19 infection leaves lasting mental health scars in youths, extending beyond the acute phase. Specific symptoms, particularly cognitive dysfunction and respiratory/gastrointestinal distress play a significant role in this vulnerability. Social-family factors further modulate these effects, highlighting the need for comprehensive interventions that address both biological and psychosocial aspects. This study provides valuable insights for tailoring mental health support to youths navigating the consequences of the COVID-19 pandemic.

3.
Int Immunopharmacol ; 132: 111990, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574702

RESUMO

Hydrogen sulfide (H2S), recognized as the third gasotransmitter, plays a pivotal role in the pathophysiological processes of various diseases. Cystathionine γ-lyase (CSE) is the main enzyme for H2S production in the skin. However, effects and mechanisms of H2S in diabetic skin wound healing remain unclear. Our findings revealed a decrease in plasma H2S content in diabetic patients with skin wounds. CSE knockout (KO) diabetic mice resulted in delayed wound healing, reduced blood perfusion, and CD31 expression around the wounds. It also led to increased infiltration of inflammatory cells and M1-type macrophages, decreased collagen levels, α-smooth muscle actin (α-SMA), and proliferating cell nuclear antigen (PCNA) expression. Additionally, there were enhanced expressions of necroptosis related proteins, including receptor interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain like protein (MLKL). In comparison, sodium hydrosulfide (NaHS), H2S donor, accelerated skin wound healing in leptin receptor deficiency (db/db) mice. This acceleration was accompanied by increased blood perfusion and CD31 expression, reduced infiltration of inflammatory cells and M1-type macrophages, elevated collagen levels, α-SMA, and PCNA expressions, and decreased necroptosis-related protein expressions together with nuclear factor-κB (NF-κB) p65 phosphorylation. In conclusion, H2S regulates macrophage polarization and necroptosis, contributing to the acceleration of diabetic skin wound healing. These findings offer a novel strategy for the treatment of diabetic skin wounds.

4.
Phytomedicine ; 128: 155385, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38569292

RESUMO

BACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear. PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice. METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC. RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of ß-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid. CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.

5.
JACS Au ; 4(3): 1194-1206, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559742

RESUMO

Using molecular imaging techniques to monitor biomarkers and drug release profiles simultaneously is highly advantageous for cancer diagnosis and treatment. However, achieving the accurate quantification of both biomarkers and drug release with a single imaging modality is challenging. This study presents the development of a glutathione (GSH)-responsive polymer-based micelle, PEG-SS-FCy7/PEG-SS-GEM (PSFG), which can precisely localize the tumor using bimodal imaging and prevent drug leakage. These PSFG micelles exhibit a small particle size of 106.3 ± 12.7 nm with a uniform size distribution, and the drug loading efficiency can also be easily controlled by changing the PEG-SS-FCy7 (PSF) and PEG-SS-GEM (PSG) feeding ratio. The PSFG micelles display weak fluorescence emission and minimal drug release under physiological conditions but collapse in the presence of GSH to trigger near-infrared fluorescence and the 19F magnetic resonance imaging signal, allowing for real-time monitoring of intracellular GSH levels and drug release. GSH could synergistically promote the disassembly of the micellar structure, resulting in accelerated probe and drug release of up to about 93.1% after 24 h. These prodrug micelles exhibit high in vitro and in vivo antitumor abilities with minimal side effects. The GSH-responsive drug delivery system with dual-modal imaging capability provides a promising imaging-guided chemotherapeutic platform to probe the tumor microenvironment and quantify real-time drug release profiles with minimal side effects.

6.
Radiat Res ; 201(4): 294-303, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588381

RESUMO

Radiation-induced intestinal damage (RIID) is a common side effect of radiotherapy in patients with abdominopelvic malignancies. Gap junctions are special structures consisting of connexins (Cxs). This study aimed to investigate the expression and role of connexins in RIID and underlying mechanism. In this study, a calcein-AM fluorescence probe was used to detect changes in gap junctional intercellular communication in intestinal epithelial IEC-6 cells. Our results show that gap junctional intercellular communication of IEC-6 cells was reduced at 6, 12, 24, and 48 h after irradiation, with the most pronounced effect at 24 h. Western blotting and immunofluorescence results showed that the expression of Cx43, but not other connexins, was reduced in irradiated intestinal epithelial cells. Silencing of Cx43 reduced gap junctional intercellular communication between irradiated intestinal epithelial cells with increased ROS and intracellular Ca2+ levels. Furthermore, knockdown of Cx43 reduced the number of clonal clusters, decreased cell proliferation with increased cytotoxicity and apoptosis. Western blotting results showed that silencing of Cx43 resulted in changed γ-H2AX and PI3K/AKT pathway proteins in irradiated intestinal epithelial cells. Administration of the PI3K/AKT pathway inhibitor LY294002 inhibited the radioprotective effects in Cx43-overexpressing intestinal epithelial cells. Our study demonstrated that Cx43 expression is decreased by ionizing radiation, which facilitates the radioprotection of intestinal epithelial cells.


Assuntos
Conexina 43 , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio/metabolismo , Conexinas/metabolismo , Conexinas/farmacologia , Transdução de Sinais , Junções Comunicantes , Comunicação Celular
7.
Heliyon ; 10(7): e28318, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586370

RESUMO

Urban expansion simulation is of significant importance to land management and policymaking. Advances in deep learning facilitate capturing and anticipating urban land dynamics with state-of-the-art accuracy properties. In this context, a novel deep learning-based ensemble framework was proposed for urban expansion simulation at an intra-urban granular level. The ensemble framework comprises i) multiple deep learning models as encoders, using transformers for encoding multi-temporal spatial features and convolutional layers for processing single-temporal spatial features, ii) a tailored channel-wise attention module to address the challenge of limited interpretability in deep learning methods. The channel attention module enables the examination of the rationality of feature importance, thereby establishing confidence in the simulated results. The proposed method accurately anticipated urban expansion in Shenzhen, China, and it outperformed all the baseline methods in terms of both spatial accuracy and temporal consistency.

8.
J Ethnopharmacol ; : 118193, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636578

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saiga antelope horn (SAH) is a traditional Chinese medicine for treating hypertension with liver-yang hyperactivity syndrome (Gan-Yang-Shang-Kang, GYSK), that has a long history of clinical application and precise efficacy, but its mechanism and functional substances are still unknown. Based on the demand for alternative research on the rare and endangered SAH, the group designed and carried out the following studies. AIM OF THE STUDY: The purpose of this research was to demonstrate the functional substances and mechanisms of SAH in the treatment of GYSK hypertension. MATERIALS AND METHODS: The GYSK-SHR model was constructed by administering a decoction of aconite to spontaneously hypertensive rats (SHRs). Blood pressure (BP), behavioural tests related to GYSK, and pathological changes in the kidneys, heart and aorta were measured to investigate the effects of SAH on GYSK-SHRs. Proteomic analysis was used to identify the keratins and peptides of SAH. Moreover, network pharmacology and plasma metabolomics studies were carried out to reveal the mechanisms by which functional peptides in SAH regulate GYSK-hypertension. RESULTS: SAH has a significant antihypertensive effect on GYSK hypertensive animals. It has also been proven to be effective in protecting the function and structural integrity of the kidneys, heart and aorta. Moreover, SAH improved the abnormalities of 31 plasma biomarkers in rats. By constructing a "biomarker-target-peptide" network, 10 functional peptides and two key targets were screened for antihypertensive effects of SAH. The results indicated that SAH may exert a therapeutic effect by re-establishing the imbalance of renin-angiotensin (RAS) system. CONCLUSIONS: Functional peptides from keratin contained in SAH are the main material basis for the treatment of GYSK-hypertension and exhibited the protective effect on the GYSK-SHR model through the RAS system.

9.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1378-1387, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621986

RESUMO

This paper aims to study the pharmacokinetic differences of twelve effective constituents(succinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, protocatechuic aldehyde, caffeic acid, 5-O-ferulogeninic acid, p-coumaric acid, nuciferine, quercetin, oleanolic acid, and ursolic acid) in Qihe Fenqing Yin in normal and diabetic rats. The diabetic rat model was established by a high-fat diet combined with intraperitoneal injection of streptozocin. A UHPLC-QTRAP-MS/MS method was established for the simultaneous determination of 12 constituents in the plasma of normal rats and model rats after a single intragastric administration of Qihe Fenqing Yin. The results show that the established analytical method has a good linear relationship with the 12 components, and the specificity, accuracy, precision, and stability meet the requirements. The computational pharmacokinetic parameters are fitted by DAS 3.2.8 software, and the results show that the half-life time(t_(1/2)) of the other nine components in the model group was longer than that in the normal group except for caffeic acid, 5-O-ferulogeninic acid, and oleanolic acid. The area under curve(AUC_(0-t)) of cryptochlorogenic acid, p-coumaric acid, ursolic acid, and oleanolic acid increases compared with the normal group. Meanwhile, mean residence time(MRT) delays. The "double peaks" of quercetin and nuciferine in the normal group are not observed in the model group, suggesting that the pharmacokinetic parameters of the drugs in the disease state are significantly different.


Assuntos
Ácidos Cafeicos , Ácidos Cumáricos , Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Ácido Oleanólico , Ratos , Animais , Ratos Sprague-Dawley , Quercetina , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/farmacocinética
10.
J Environ Sci (China) ; 142: 193-203, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527884

RESUMO

Neburon is a phenylurea herbicide that is widely used worldwide, but its toxicity is poorly studied. In our previous study, we found that neburon has strong aryl hydrocarbon receptor (AhR) agonist activity, but whether it causes reproductive toxicity is not clear. In the present study, zebrafish were conducted as a model organism to evaluate whether environmental concentrations of neburon (0.1, 1 and 10 µg/L) induce reproductive disorder in males. After exposure to neburon for 150 days from embryo to adult, that the average spawning egg number in high concentration group was 106.40, which was significantly lower than 193.00 in control group. This result was mainly due to the abnormal male reproductive behavior caused by abnormal transcription of genes associated with reproductive behavior in the brain, such as secretogranin-2a. The proportions of spermatozoa in the medium and high concentration groups were 82.40% and 83.84%, respectively, which were significantly lower than 89.45% in control group. This result was mainly caused by hormonal disturbances and an increased proportion of apoptotic cells. The hormonal disruption was due to the significant changes in the transcription levels of key genes in the hypothalamus-pituitary-gonadal axis following neburon treatment. Neburon treatment also significantly activated the AhR signaling pathway, causing oxidative stress damage and eventually leading to a significant increase in apoptosis in the exposed group. Together, these data filled the currently more vacant profile of neburon toxicity and might provide information to assess the ecotoxicity of neburon on male reproduction at environmentally relevant concentrations.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Masculino , Peixe-Zebra/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Compostos de Fenilureia/farmacologia , Reprodução , Poluentes Químicos da Água/metabolismo
11.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474620

RESUMO

Hyperlipidemia, characterized by elevated serum lipid concentrations resulting from lipid metabolism dysfunction, represents a prevalent global health concern. Ginsenoside Rb1, compound K (CK), and 20(S)-protopanaxadiol (PPD), bioactive constituents derived from Panax ginseng, have shown promise in mitigating lipid metabolism disorders. However, the comparative efficacy and underlying mechanisms of these compounds in hyperlipidemia prevention remain inadequately explored. This study investigates the impact of ginsenoside Rb1, CK, and PPD supplementation on hyperlipidemia in rats induced by a high-fat diet. Our findings demonstrate that ginsenoside Rb1 significantly decreased body weight and body weight gain, ameliorated hepatic steatosis, and improved dyslipidemia in HFD-fed rats, outperforming CK and PPD. Moreover, ginsenoside Rb1, CK, and PPD distinctly modified gut microbiota composition and function. Ginsenoside Rb1 increased the relative abundance of Blautia and Eubacterium, while PPD elevated Akkermansia levels. Both CK and PPD increased Prevotella and Bacteroides, whereas Clostridium-sensu-stricto and Lactobacillus were reduced following treatment with all three compounds. Notably, only ginsenoside Rb1 enhanced lipid metabolism by modulating the PPARγ/ACC/FAS signaling pathway and promoting fatty acid ß-oxidation. Additionally, all three ginsenosides markedly improved bile acid enterohepatic circulation via the FXR/CYP7A1 pathway, reducing hepatic and serum total bile acids and modulating bile acid pool composition by decreasing primary/unconjugated bile acids (CA, CDCA, and ß-MCA) and increasing conjugated bile acids (TCDCA, GCDCA, GDCA, and TUDCA), correlated with gut microbiota changes. In conclusion, our results suggest that ginsenoside Rb1, CK, and PPD supplementation offer promising prebiotic interventions for managing HFD-induced hyperlipidemia in rats, with ginsenoside Rb1 demonstrating superior efficacy.


Assuntos
Microbioma Gastrointestinal , Ginsenosídeos , Hiperlipidemias , Sapogeninas , Ratos , Animais , Ginsenosídeos/metabolismo , Dieta Hiperlipídica , Metabolismo dos Lipídeos , Peso Corporal , Ácidos e Sais Biliares
12.
J Evid Based Med ; 17(1): 134-144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465839

RESUMO

OBJECTIVE: With the increasing number of patients with cognitive impairment, nonpharmacological ways to delay cognitive impairment have attracted people's attention, such as lifestyle changes and nutritional supplementation. Folic acid supplementation appears to be a promising treatment option. However, it remains controversial whether folic acid supplementation is effective in delaying adult's cognitive impairment. Therefore, we conducted a meta-analysis to analyze the effects of folic acid supplementation on different cognitive impairments. METHODS: We systematically searched PubMed, Web of Science, EMbase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure (CNKI), WanFang and VIP databases for randomized controlled trials on January 22, 2024. The included population comprised those diagnosed with cognitive impairment. We included trials that compared folic acid treatment with placebo, other dosing regimens, or other intervention controls. Conducting quality evaluation of included studies according to the Cochrane Risk of Bias tool. Statistical analyses were performed using Review Manager software. RESULTS: Twenty-two trials, including 3604 participants, met inclusion criteria. Compared with controls, the cognitive function of Alzheimer's disease (AD) patients showed improvement with folic acid supplementation: supplementation with < 3 mg (standardized mean differences (SMD) = 0.15, 95% confidence interval (CI) -0.10 to 0.41), and supplementing with ≥ 3 mg folic acid could improve cognitive function in AD patients (SMD = 1.03, 95% CI 0.18 to 1.88). Additionally, it reduced homocysteine (HCY) levels (mean differences (MD) = -4.74, 95% CI -8.08 to -1.39). In mild cognitive impairment (MCI) patients, cognitive function improved with folic acid supplementation: supplementation with > 400 µg (SMD = 0.38, 95% CI 0.13 to 0.63), and supplementation with ≤ 400 µg (SMD = 1.10, 95% CI 0.88 to 1.31). It also reduced HCY levels at intervention ≤ 6 months (MD = -3.93, 95% CI -5.05 to -2.82) and intervention > 6 months (MD = -4.38, 95% CI -5.15 to -3.61). However, supplementing with folic acid did not improve cognitive function in vascular cognitive impairment (VCI) patients, with folic acid supplements < 3 mg (SMD = -0.07, 95% CI -0.23 to -0.08), folic acid supplements ≥ 3 mg (SMD = 0.46, 95% CI -0.57 to 1.49), however, it reduced HCY levels at intervention > 6 months (MD = -5.91, 95% CI -7.13 to -4.69) and intervention ≤ 6 months (MD = -11.15, 95% CI -12.35 to -9.95). CONCLUSIONS: Supplement folic acid is beneficial to the cognitive profile of patients with MCI, supplementation with ≥ 3 mg folic acid can improve cognitive function in AD patients.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Adulto , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto , Disfunção Cognitiva/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Suplementos Nutricionais , Ácido Fólico/uso terapêutico
13.
J Ethnopharmacol ; 327: 118062, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38492790

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ligusticum chuanxiong Hort (LCH), with the accepted name of Ligusticum striatum DC in "The Plant List" database, is a widely used ethnomedicine in treating ischemic stroke, and borneol (BO) is usually prescribed with LCH for better therapy. Our previous study confirmed their synergistic effect on neurogenesis against cerebral ischemia. However, the underlying mechanism is still unclear. AIM OF THE STUDY: More and more evidence indicated that astrocytes (ACs) might be involved in the modulation of neurogenesis via polarization reaction. The study was designed to explore the synergic mechanism between LCH and BO in promoting astrocyte-mediated neurogenesis. MATERIALS AND METHODS: After primary cultures and identifications of ACs and neural stem cells (NSCs), the oxygen-glucose deprivation (OGD) model and the concentrations of LCH and BO were optimized. After the OGD-injured ACs were treated by LCH, BO, and their combination, the conditioned mediums were used to culture the OGD-injured NSCs. The proliferation, migration, and differentiation of NSCs were assessed, and the secretions of BDNF, CNTF, and VEGF from ACs were measured. Then the expressions of C3 and PTX3 were detected. Moreover, the mice were performed a global cerebral ischemia/reperfusion model and treated with LCH and (or) BO. After the assessments of Nissl staining, the expressions of Nestin, DCX, GFAP, C3, PTX3, p65 and p-p65 were probed. RESULTS: The most appropriate duration of OGD for the injury of both NSCs and ACs was 6 h, and the optimized concentrations of LCH and BO were 1.30 µg/mL and 0.03 µg/mL, respectively. The moderate OGD environment induced NSCs proliferation, migration, astrogenesis, and neurogenesis, increased the secretions of CNTF and VEGF from ACs, and upregulated the expressions of C3 and PTX3. For the ACs, LCH further increased the secretions of BDNF and CNTF, enhanced PTX3 expression, and reduced C3 expression. Additionally, the conditioned medium from LCH-treated ACs further enhanced NSC proliferation, migration, and neurogenesis. The in vivo study showed that LCH markedly enhanced the Nissl score and neurogenesis, and decreased astrogenesis which was accompanied by downregulations of C3, p-p65, and p-p65/p65 and upregulation of PTX3. BO not only decreased the expression of C3 in ACs both in vitro and in vivo but also downregulated p-p65 and p-p65/p65 in vivo. Additionally, BO promoted the therapeutic effect of LCH for most indices. CONCLUSION: A certain degree of OGD might induce ACs to stimulate the proliferation, astrogenesis, and neurogenesis of NSCs. LCH and BO exhibited a marked synergy in promoting ACs-mediated neurogenesis and reducing astrogenesis, in which LCH played a dominant role and BO boosted the effect of LCH. The mechanism of LCH might be involved in switching the polarization of ACs from A1 to A2, while BO preferred to inhibit the formation of A1 phenotype via downregulating NF-κB pathway.


Assuntos
Isquemia Encefálica , Canfanos , Ligusticum , Camundongos , Animais , Astrócitos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/farmacologia , Fator Neurotrófico Ciliar/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neurogênese , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral
14.
Foods ; 13(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38472898

RESUMO

In the handling or processing process, fruits are easily crushed by external loads. This type of damage in fruit often leads to the internal pulp browning and rotting, with the severity largely dependent on the fruit tissue's geometric and mechanical properties. In kiwifruits, with their thin skin and dark-colored flesh, it is particularly challenging to observe and analyze the damage caused by extrusion through traditional experimental methods. The objective of this research is to construct a multi-scale finite element model encompassing the skin, flesh, and core by measuring the geometric and mechanical properties of kiwifruit, to assess and predict the damage characteristics under compression, and to verify the accuracy of the finite element model through experiments. The results indicated that kiwifruits demonstrated different compressive strengths in different directions during compression. The compressive strength in the axial direction was higher than that in the radial direction, and there was little difference between the long and short radial directions. The flesh tissue is the most vulnerable to mechanical damage under external compression, followed by the core. At strain levels below 5%, there was no noticeable damage in the axial or radial directions of the kiwifruit. However, when strain exceeded 5%, damage began to manifest in some of the flesh tissue. To maintain fruit quality during storage and transportation, the stacking height should not exceed 77 fruits in the axial direction, 48 in the long direction, and 53 in the short direction. The finite element analysis showed that the established model can effectively simulate and predict the internal damage behavior of kiwifruits under compression loads, which is helpful for a deeper understanding of the mechanical properties of fruits and provides a theoretical basis and technical guidance for minimizing mechanical damage during fruit handling.

15.
Anal Chem ; 96(11): 4521-4527, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38442333

RESUMO

As an important alarmone nucleotide, guanosine 3'-diphosphate-5'-diphosphate (ppGpp) can regulate the survival of bacteria under strict environmental conditions. Direct detection of ppGpp in bacteria with high sensitivity and selectivity is crucial for elucidating the role of ppGpp in bacterial stringent response. Herein, the terbium-carbon dots nanocomposite (CDs-Tb) modified glass nanopipet was developed for the recognition of ppGpp. The CDs-Tb in glass nanopipette preserved their fluorescence properties as well as the coordination capacity of Tb3+ toward ppGpp. The addition of ppGpp not only led to the fluorescence response of CDs-Tb but also triggered variations of surface charge inside the glass nanopipet, resulting in the ionic current response. Compared with nucleotides with similar structures, this method displayed good selectivity toward ppGpp. Moreover, the dual signals (fluorescence and ionic current) offered a built-in correction for potential interference. Apart from the high selectivity, the proposed method can determine the concentration of ppGpp from 10-13 to 10-7 M. Taking advantage of the significant analytical performance, we monitored ppGpp in Escherichia coli under different nutritional conditions and studied the relationship between ppGpp and DNA repair, which is helpful for overcoming antibiotic resistance and promoting the development of potential drugs for antibacterial treatment.


Assuntos
Carbono , Guanosina Tetrafosfato , Difosfatos , Bactérias , Guanosina Pentafosfato , Proteínas de Bactérias/genética
16.
ACS Nano ; 18(11): 8125-8142, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451090

RESUMO

Osteoarthritis (OA) is a degenerative joint disease characterized by progressive erosion of the articular cartilage and inflammation. Mesenchymal stem cells' (MSCs) transplantation in OA treatment is emerging, but its clinical application is still limited by the low efficiency in oriented differentiation. In our study, to improve the therapeutic efficiencies of MSCs in OA treatment by carbonic anhydrase IX (CA9) siRNA (siCA9)-based inflammation regulation and Kartogenin (KGN)-based chondrogenic differentiation, the combination strategy of MSCs and the nanomedicine codelivering KGN and siCA9 (AHK-CaP/siCA9 NPs) was used. In vitro results demonstrated that these NPs could improve the inflammatory microenvironment through repolarization of M1 macrophages to the M2 phenotype by downregulating the expression levels of CA9 mRNA. Meanwhile, these NPs could also enhance the chondrogenesis of bone marrow-derived mesenchymal stem cells (BMSCs) by upregulating the pro-chondrogenic TGF-ß1, ACAN, and Col2α1 mRNA levels. Moreover, in an advanced OA mouse model, compared with BMSCs alone group, the lower synovitis score and OARSI score were found in the group of BMSCs plus AHK-CaP/siCA9 NPs, suggesting that this combination approach could effectively inhibit synovitis and promote cartilage regeneration in OA progression. Therefore, the synchronization of regulating the inflammatory microenvironment through macrophage reprogramming (CA9 gene silencing) and promoting MSCs oriented differentiation through a chondrogenic agent (KGN) may be a potential strategy to maximize the therapeutic efficiency of MSCs for OA treatment.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Sinovite , Camundongos , Animais , Condrogênese , Nanomedicina , Osteoartrite/tratamento farmacológico , Diferenciação Celular , Inflamação/metabolismo , Sinovite/metabolismo , RNA Mensageiro/metabolismo
17.
Mol Pharm ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527915

RESUMO

Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-ß1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.

19.
J Colloid Interface Sci ; 664: 96-106, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460388

RESUMO

The means of structural hybridization such as heterojunction construction and carbon-coating engineering for facilitating charge transfer and electron transport are considered viable strategies to address the challenges associated with the low rate capability and poor cycling stability of sulfide-based anodes in potassium-ion batteries (PIBs). Motivated by these concepts, we have successfully prepared a hydrangea-like bimetallic sulfide heterostructure encapsulated in nitrogen-doped carbon (FMS@NC) using a simple solvothermal method, followed by poly-dopamine wrapping and a one-step sulfidation/carbonization process. When served as an anode for PIBs, this FMS@NC demonstrates a high specific capacity (585 mAh g-1 at 0.05 A/g) and long cycling stability. Synergetic effects of mitigated volume expansions and enhanced conductivity that are responsbile for such high performance have been verified to originate from the heterostructured sulfides and the N-doped carbon matrix. Meanwhile, comprehensive characterization reveals existence of an intercalation-conversion hybrid K-ion storage mechanism in this material. Impressively, a K-ion capacitor with the FMS@NC anode and a commercial activated carbon cathode exhibits a superior energy density of up to 192 Wh kg-1, a high power density, and outstanding cycling stability. This study provides constructive guidance for designing high-performance and durable potassium-ion storage anodes for next-generation energy storage devices.

20.
Blood Adv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507688

RESUMO

Treatment with enasidenib, a selective mutant-IDH2 inhibitor, has been associated with the development of differentiation syndrome (DS) in patients with acute myeloid leukemia (AML). Studies on the incidence and clinical features of DS are limited in this setting, and diagnosis is challenging due to non-specific symptoms. This study assessed the incidence, diagnostic criteria, risk factors, and correlation with clinical response of DS based on the pooled analysis of 4 clinical trials in patients with IDH2-mutated AML treated with enasidenib as monotherapy, or in combination with azacitidine or with chemotherapy. Across the total AML population, 10.4% (67/643) had ≥1 any-grade DS event, with highest incidence in patients who received enasidenib plus azacitidine and lowest incidence in patients who received enasidenib plus chemotherapy (17.6% [13/74] and 2.2% [2/93]). The most common symptoms of DS were dyspnea/hypoxia (80.6%) and pulmonary infiltrate (73.1%). Median time to onset of first DS event across all studies was 32 days (range: 4-129 days). Most patients (88.1%) received systemic steroids for treatment of DS. Evaluation of baseline risk factors for DS identified higher levels of bone marrow blasts and lactate dehydrogenase as independent factors associated with increased grade 3-5 DS risk. Overall, these results suggest that DS associated with IDH inhibition is manageable, given the benefits of enasidenib treatment in IDH2-mutated AML. We further characterized enasidenib-related DS in these patients and identified risk factors, which could be used for DS management in clinical practice. Clinical Trials #: NCT01915498, NCT02577406, NCT02677922, NCT02632708.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...